Actual installation example

Example of solar heat utilization

MITSUBISHI PLASTICS

Zeolitic Water Vapor Adsorbent

AQSOA™ Adsorption Heat Pump

No warranty or representation is made by Mitsubishi Plastics, INC. as to the accuracy or completeness of the information contained herein, and nothing contained herein is or shall be relied upon as a promise or a representation as to the future. Each and any potential partner, distributor, customer or investor in Mitsubishi Plastics, INC. must conduct and rely on its own evaluation of the company, its technology and products.

AQSOA™ is a trademark of MITSUBISHI PLASTICS, INC. (In Japan)

MITSUBISHI PLASTICS, INC.

http://www.mpi.co.jp/

AQSOA Project

Headquarters 1-2-2, Nihombashi-hongoku-cho, Chuo-ku, Tokyo 103-0021, Japan
Tel: +81-3-3279-3094 / Fax: +81-3-3279-6636

Manufactured at MAYEKAWA MFG. CO., LTD

AQSOA™ Adsorption Heat Pump was a product developed by both MITSUBISHI PLASTICS, INC. and MAYEKAWA MFG. CO., LTD, and is sold by both companies.

This publication will be revised with no advanced notice. Published in September 2010

Printed in Japan 109102
Main features of AQSOA Adsorption Heat Pump

- **Regenerates at Low Temperature (60°C−)**
- **COP 10.3**
- **Water coolant**
- **Adsorption type**

Operating Principle

- **Adsorption process**
- **Desorption process**

- Water (refrigerant) evaporates in the evaporator. Cold water is generated by the evaporation latent heat.
- The vapor is adsorbed by the adsorption heat exchanger. Adsorption heat is generated by the adsorption heat exchanger and removed by cooling water to improve adsorption process.
- The adsorbed vapor is removed from the other adsorption heat exchanger by hot water.

Comparison of cooling system (Mitsubishi Plastics data)

- A highly effective cooling is achieved by effective use of exhaust heat (COP 10.3)

<table>
<thead>
<tr>
<th>AQSOA™ Adsorption Heat Pump</th>
<th>Turbo refrigeration</th>
<th>Air cooling only</th>
<th>Steam absorption only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driving force source</td>
<td>Gas (H2O)</td>
<td>Electric heater</td>
<td>Steam</td>
</tr>
<tr>
<td>Cooling Capacity</td>
<td>350 Kw (at 9°C)</td>
<td>387 Kw (at 7°C)</td>
<td>295 Kw (at 8°C)</td>
</tr>
<tr>
<td>Device driving power</td>
<td>4.8 Kw (at 9°C)</td>
<td>6.5 Kw (at 7°C)</td>
<td>5.0 Kw (at 8°C)</td>
</tr>
<tr>
<td>Steam</td>
<td>7.0 Kg/h</td>
<td>7.0 Kg/h</td>
<td>5.0 Kg/h</td>
</tr>
<tr>
<td>CO₂ emissions (Kg/year)</td>
<td>119.6</td>
<td>390.7</td>
<td>390.7</td>
</tr>
<tr>
<td>COP</td>
<td>10.3</td>
<td>4.2</td>
<td>4.4</td>
</tr>
</tbody>
</table>

The electric energy is only 1.1 Kw.

Improvements over conventional type

- **New type**
 - AQSOA™ (Coping type)
 - Monoblock

Standard Unit Specifications

- **Performance diagram**

HISHI COOLING TOWER™ cooling tower is recommended as cooling water source.

- **Term**
 - Model
 - Open type
 - Low temperature: H4−1000Kw-4H
 - Ultra-light type: H4−1000Kw-4H
 - Closed type
 - Low temperature: H4−1000Kw-4H
 - Ultra-light type: H4−1000Kw-4H

- **Conditions**
 - Supply air at 37°C, Inhalation water at 27°C
 - Please consult us for detailed information.